GET STARTED

Sign in and create a new project.

START HERE

- Go to the Scratch website: http://scratch.mit.edu
- Sign into your account.
- Click on the “Create” tab located at the top left of the browser to start a new project.
- Time to explore! Try clicking on different parts of the Scratch interface to see what happens.
- Play with different Scratch blocks! Drag and drop Scratch blocks into the scripting area. Experiment by clicking on each block to see what they do or try snapping blocks together.
12 BLOCKS

ACTIVITY DESCRIPTION

- Help students sign in to their Scratch accounts and click on the Create button at the top of the Scratch website to start a new project. Optionally, have the 12 Blocks handout available to guide students during the activity.

- Give students time to create a project with only these 12 Scratch blocks: go to, glide, say, show, hide, set size to, play sound until done, when this sprite clicked, wait, and repeat. Remind students to use each block at least once in their project and encourage them to experiment with different sprites, costumes, or backdrops.

- Invite students to share their projects in their critique groups (see the Unit 0 Critique Group activity). Optionally, have students add their projects to the 10 Blocks studio or a class studio.

- Ask students to think back on the design process by responding to the reflection prompts in their design journals or in a group discussion.

OBJECTIVES

By completing this activity, students will:

- create a project with the constraint of only being able to use 12 blocks

RESOURCES

- 12 Blocks handout
- 12 Blocks studio
 http://scratch.mit.edu/studios/475480

REFLECTION PROMPTS

- What was difficult about being able to use only 12 blocks?
- What was easy about being able to use only 12 blocks?
- How did it make you think of things differently?

REVIEWING STUDENT WORK

- Do projects include all 12 blocks?
- How do different students react to the idea of creating with constraints? What might this tell you about how this student learns?

NOTES

- It’s surprising how much one can do with just 12 blocks! Take this opportunity to encourage different ideas and celebrate creativity by inviting a few students to present their projects in front of the class or by exploring other projects online in the 12 Blocks studio.

NOTES TO SELF

- ____________________________
12 BLOCKS

WHAT CAN YOU CREATE WITH ONLY 12 SCRATCH BLOCKS?

Create a project using only these 10 blocks. Use them once, twice, or multiple times, but use each block at least once.

START HERE

- Test ideas by experimenting with each block.
- Mix and match blocks in various ways.
- Repeat!

FEELING STUCK?

THAT'S OKAY! TRY THESE THINGS...

- Test ideas by trying out different block combinations. Mix and match blocks until you find something that interests you!
- Try brainstorming ideas with a neighbor!
- Explore other projects to see what others are doing in Scratch. This can be a great way to find inspiration!

FINISHED?

- Play with different sprites, costumes, or backdrops.
- Challenge yourself to do more! See how many different projects you can create with these 12 blocks.
- Swap projects with a partner and remix each others’ creations.
DEBUG IT!

OBJECTIVES
By completing this activity, students will:
+ investigate the problem and find a solution to five debugging challenges
+ explore a range of concepts (including sequence) through the practices of testing and debugging
+ develop a list of strategies for debugging projects

ACTIVITY DESCRIPTION

- Optionally, have the Unit 1 Debug It! handout available to guide students during the activity.
- Help students open the Debug It! programs from the Unit 1 Debug It! studio or by following the project links listed on the Unit 1 Debug It! handout. Encourage students to click on the “Look Inside” button to investigate the buggy program, tinker with problematic code, and test possible solutions.
- Give students time to test and debug each Debug It! challenge. Optionally, have students use the remix function in Scratch to fix the bugs and save corrected programs.
- Ask students to reflect back on their testing and debugging experiences by responding to the reflection prompts in their design journals or in a group discussion.
- Create a class list of debugging strategies by collecting students’ problem finding and problem solving approaches.

RESOURCES

- Unit 1 Debug It! handout
- Unit 1 Debug It! studio
 http://scratch.mit.edu/studios/475483

REFLECTION PROMPTS

+ What was the problem?
+ How did you identify the problem?
+ How did you fix the problem?
+ Did others have alternative approaches to fixing the problem?

REVIEWING STUDENT WORK

+ Were students able to solve all five bugs? If not, how might you clarify the concepts expressed in the unsolved programs?
+ What different testing and debugging strategies did students employ?

NOTES

+ This activity works well in groups! Get students working in teams of 2-4 people to collectively problem solve and share debugging strategies.
+ Testing and debugging is probably the most common activity of programmers. Things rarely work as planned, so developing a set of testing and debugging strategies will be beneficial to any computational creator.
HELP! CAN YOU DEBUG THESE FIVE SCRATCH PROGRAMS?

In this activity, you will investigate what is going awry and find a solution for each of the five Debug It! challenges.

START HERE

- Go to the Unit 1 Debug It! studio: http://scratch.mit.edu/studios/475483
- Test and debug each of the five debugging challenges in the studio.
- Write down your solution or remix the buggy program with your solution.

DEBUG IT! 1.1 http://scratch.mit.edu/projects/10437040
When the green flag is clicked, both Gobo and Scratch Cat should start dancing. But only Scratch Cat starts Dancing! How do we fix the program?

DEBUG IT! 1.2 http://scratch.mit.edu/projects/10437249
In this project, when the green flag is clicked, the Scratch Cat should start on the left side of the stage, say something about being on the left side, glide to the right side of the stage, and say something about being on the right side. It works the first time the green flag is clicked, but not again. How do we fix the program?

DEBUG IT! 1.3 http://scratch.mit.edu/projects/10437366
The Scratch Cat should do a flip when the space key is pressed. But when the space key is pressed, nothing happens! How do we fix the program?

DEBUG IT! 1.4 http://scratch.mit.edu/projects/10437439
In this project, the Scratch Cat should pace back and forth across the stage, when it is clicked. But the Scratch Cat is flipping out – and is walking upside down! How do we fix the program?

DEBUG IT! 1.5 http://scratch.mit.edu/projects/10437476
In this project, when the green flag is clicked, the Scratch Cat should saw 'Meow, meow, meow!' in a speech bubble and as a sound. But the speech bubble happens before the sound – and the Scratch Cat only makes one ‘Meow’ sound! How do we fix the program?

FEELING STUCK?
THAT’S OKAY! TRY THESE THINGS...

- Make a list of possible bugs in the program.
- Keep track of your work! This can be a useful reminder of what you have already tried and point you toward what to try next.
- Share and compare your problem finding and problem solving approaches with a neighbor until you find something that works for you!

FINISHED?

+ Discuss your testing and debugging practices with a partner. Make note of the similarities and differences in your strategies.
+ Add code commentary by right clicking on blocks in your scripts. This can help others understand different parts of your program!
+ Help a neighbor!